Topic: M. Abadi et al.: TensorFlow:
Large-Scale Machine Learning on
Heterogeneous Distributed Systems,
Preliminary White Paper, 2015.

Presenter: Woon

.7 UNIVERSITY OF
¥ CAMBRIDGE

What does Machine Learning actually needs? (Pre-2015 Challenge)

lan Goodfellow and colleagues
invented generative adversarial

Fei-Fei Li introduced ImageNet, networks, a type of model that is OpenAl released ChatGPT in

which became a catalyst for the Al used to g'enerate photos and create November to provide a chat-based

boom! deep fakes interface to its GPT 3.5 LLM.
2012 2017

2009

SN =

2014 ’ ’ 2022

Geoffrey Hinton, llya Sutskever and A Google researchers developed
Alex Krizhevsky introduced a deep ‘ O EVeren Transformer through a paper called
CNN architecture trained on NVIDIA TensorFlow y “Attention is All you need”

GPU, they then won the ImageNet
Competition

2015 2016

Flexibility to express diverse ML algorithms
Heterogeneous Hardware Support
Scalability

Research-to-Production Pipeline

SR ERT O The Dataflow Programming Model - Computation as a Graph

Dataflow programming A 10 languages -

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the
data flowing between operations, thus implementing dataflow principles and architecture ']

Core Principles of Dataflow Programming: ©

1. Computation == Directed Graph 3

2. Data-Driven Execution

3. Explicit Data Dependencies

4. Implicit Parallelism o

2 Stage Process in TensorFlow: @/

1. Define program as dataflow graph

2. Optimize then execute (vf }@

Image Source: (Abadi et al., 2015)

g5 UNIVERSITY OF

s

4% CAMBRIDGE

Dimension

Primary Use Case

Execution Pattern

State Management

Graph Structure

Operation
Granularity

General-Purpose Dataflow Wasn't Enough

Earlier Dataflow System (Pre-Tensorflow)

e Focus on Batch Data Processing

e One-shot jobs or periodic resubmission

e Mostly external storage

e Acyclic (DAGs only)

e Coarse (map/reduce on partitions)

What Machine Learning in DataFlow needs?

e |Iterative Optimization on Model Training

e Millions of iterations in single session

e Persistent mutable parameters in graph

e Cyclic (loops) + conditionals

e Fine-grained (individual matrix ops)

5% TYO ! - - :
LY Lessons from TensorFlow's Predecessor - DistBelieve

Before Tensorflow, Google was using DistBelieve for their research.

Limitation #1: Separate Training and Inference Systems

Limitation #2: Hard-Coded Neural Network Focus, Difficult to express other ML
Limitation #3: Parameter Server as Separate Subsystem

Limitation #4: Limited Flexibility in Parallelism

Limitation #5: Difficult Debugging and Visualization

PS tasks

Worker tasks

Image Source: Distributed TensorFlow (TensorFlow Dev Summit 2018)
https://www.youtube.com/watch?v=-h0cWBiQ8s8

Variables

In most computations a graph is executed multiple times.
Most tensors do not survive past a single execution of the
graph. However, a Variable is a special kind of opera-
tion that returns a handle to a persistent mutable tensor
that survives across executions of a graph. Handles to
these persistent mutable tensors can be passed to a hand-
ful of special operations, such as Assign and AssignAdd
(equivalent to +=) that mutate the referenced tensor. For
machine learning applications of TensorFlow, the param-
eters of the model are typically stored in tensors held in
variables, and are updated as part of the Run of the train-
ing graph for the model.

Eal ba 1 . _
LY TensorFlow's Core Innovation #1 - Stateful Dataflow for ML

4.7 Containers

A Container is the mechanism within TensorFlow for
managing longer-lived mutable state. The backing store
for a Variable lives in a container. The default con-
tainer is one that persists until the process terminates,
but we also allow other named containers. A container
can be reset by clearing it of its contents entirely. Us-
ing containers, it is possible to share state even across
completely disjoint computation graphs associated with
different Sessions.

Container (Process)

Variable W: data
Variable b: data
Variable params...

«— Persists across
graph executions

B UNIVERSITY OF TensorFlow's Core Innovation #2 - Single System, Any Platform

i‘l_?ospberry Pi:4 Model B
|\'[@Raspberry Pi 2018

China M 1904

Trxcom® |:
TRJGO926HENL V

2
]

Operations and Kernels

— : An operation has a name and represents an abstract com-
7 A Z;M; N = \ putation (e.g., “matrix multiply”, or “add”). An opera-

RN ~ tion can have artributes, and all attributes must be pro-
: 91 vided or inferred at graph-construction time in order to
instantiate a node to perform the operation. One com-
mon use of attributes is to make operations polymorphic
over different tensor element types (e.g., add of two ten-
sors of type float versus add of two tensors of type int32).
A kernel is a particular implementation of an operation
that can be run on a particular type of device (e.g.. CPU
or GPU). A TensorFlow binary defines the sets of opera-
tions and kernels available via a registration mechanism,
and this set can be extended by linking in additional op-
eration and/or kernel definitions/registrations. Table |
shows some of the kinds of operations built into the core

TensorFlow library.

Image Source: (Abadi et al., 2015)

o TensorFlow Advanced Feature #1: Automatic Differentiation

Figure 5: Gradients computed for graph in Figure 2

Image Source: (Abadi et al., 2015)

SR TYO o . °
S UNIVERSITY OF TensorFlow Advanced Feature #2: Partial Execution

fetch

feed

Figure 6: Before and after graph transformation for par-
tial execution

Image Source: (Abadi et al., 2015)

TensorFlow Advanced Feature #3: Control Flow

Control flow operations | Merge, Switch, Enter, Leave, Nextlteration

“We introduce a small set of primitive control flow operators... The Switch and Merge operators allow
us to skip the execution of an entire subgraph based on the value of a boolean tensor. The Enter,
Leave, and Nextlteration operators allow us to express iteration”

True

tf.cond()

Image Source:
https://hfooladi.github.io/posts/2019/0
5/TensorFlow-Condition/

BB TYO i ?
LY How Tensorflow scales to Hundreds/Thousands of Machines?

Challenge #1: Decide which device to place the computation for each node in
the graph

Challenge #2: Manage the required communication of data across device
boundaries implied by these placement decisions

Challenge #3: Handle failures without losing training progress

CPU CPU

Input Input

GPUO GPU1 GPUO GPU1

GPU2 GPU3 GPU2 GPU3

Image Source: Distributed TensorFlow (TensorFlow Dev Summit 2018)
https://www.youtube.com/watch?v=-h0cWBiQ8s8

SR ERT O Cost Model as input to a placement algorithm

Challenge #1: Decide which device to place the computation for each node in the graph

Step 1: Build a cost model which contains the estimated size of the input / output tensor &
computational time.
Step 2: The placement algorithm runs a simulated execution of the graph
e Algorithm starts with the sources of the computation graph, and simulates the activity on
each device in the system as it progresses
e Consider a set of feasible devices with suitable kernels
e For multiple feasible devices, the algorithm will pick device for each node in the graph using
greedy heuristics
e This heuristic takes into account the estimated or measured execution time of the operation
on that kind of device from the cost model

“On-going development”

¥ CAMBRIDGE

B8 UNIVERSITY OF From Parameter Server to Send / Receive Nodes (2015)

Challenge #2: Manage the required communication of data across device boundaries

implied by these placement decisions

GPU GPU GPU GPU GPU GPU GPU GPU

GPU

GPU

single parameter server

Image Source:
https://d2l.ai/chapter_computational-p
erformance/parameterserver.html

N\] @]

J .

(Device B

® © @\/©

recv

®
t

@/recv

| Device A J (Device A

Figure 4: Before & after insertion of Send/Receive nodes

Image Source: (Abadi et al., 2015)

¥ CAMBRIDGE

P UNIVERSITY OF From Send / Receive Nodes to All Reduce (2018)

Challenge #2: Manage the required communication of data across device boundaries

implied by these placement decisions

GPUO GPU1 GPU2 GPU3 GPUO GPU1

all- reduce

All reduce is an collective operation, where all node contributes
data, and every node receives the same aggregated data.

In machine learning, all-reduce operations are commonly seen in
synchronous parameter updates of the distributed Stochastic
Gradient Descent (SGD) optimization.

All reduce operation is included in NCCL, workable on NVLink
and Infiniband.

GPU3

Image Source:
https://developer.nvidia.com/blog/fast-multi-
gpu-collectives-nccl/

NCCL latency

Alireduce, 8 bytes
51200

== NCCL 2.4 — Trees

25600
s NCCL 2.3 — RiNgs
12800

6400

e Image Source:

https://developer.nvidia.com/blog/mas
sively-scale-deep-learning-training-nc
cl-2-4/

I

96 192 384 768 1536 3072 6144 12288 24576
GPUs

B3 UNIVERSITY OF Fault Tolerance & Checkpointing so Training Doesn't Stop for Failures

Challenge #3: Handle failures without losing training progress
Fault Tolerance

Failures in a distributed execution can be detected in a
variety of places. The main ones we rely on are (a) an
error in a communication between a Send and Receive
node pair, and (b) periodic health-checks from the master
process to every worker process.

When a failure is detected, the entire graph execution
is aborted and restarted from scratch. Recall however
that Variable nodes refer to tensors that persist across ex-
ecutions of the graph. We support consistent checkpoint-
ing and recovery of this state on a restart. In partcular,
each Variable node is connected to a Save node. These
Save nodes are executed periodically, say once every N
iterations, or once every N seconds. When they execute,
the contents of the variables are written to persistent stor-
age, e.g., a distributed file system. Similarly each Vari-
able is connected to a Restore node that is only enabled
in the first iteration after a restart. See Section 4.2 for
details on how some nodes can only be enabled on some
executions of the graph.

.7 UNIVERSITY OF ini
% UNIVERSITY OF Data Parallel Training

5 =
(Parameter Device(s)

2 A

Device A Device B Device C

o) | e | Jeo

Synchronous Data Parallelism

(" Parameter Device(s))

Clent 3}->{0pgat8) </ 22
Client 2 -->(Update)<{2P a W

Client 1 |-7>|Update <—L

| Device A mOdDee\llice B l'.nOdll)eelvice C
len| | e | e
= | |

. Asynchronous Data Parallelism

\k_)P

Figure 7: Synchronous and asynchronous data parallel training ,
Image Source: (Abadi et al., 2015)

7 UNIVERSITY OF ini
% UNIVERSITY OF Model Parallel Training

. W

(Device 2

/B /B B B B

s (Do) fa

Figure 8: Model parallel training

Image Source: (Abadi et al., 2015)

Z1.7 UNIVERSITY OF H : :
B UNIVERSITY OF Performance Optimizations

e Common subexpression elimination: Deduplicate identical ops

e Memory scheduling: reduce the time window during which
intermediate results need to be kept in memory

e Kernel libraries: cuDNN, Eigen (don't reinvent optimized linear algebra)

e Lossy compression: 32-bit — 16-bit for cross-device transfers

- T efge L L] Q
UNIVERSITY OF Profiling & Visualization Tools

total_loss count
,aw ™ ScalarSu... Const O D
PN _-gradient... global_s... 30—
global_s... £1000F P moving_a...
total_lo. I v group_de...
old_grad. 0 --m > Init
conv2 11 SOﬂmax e *11111% global_s...
conv] 5 S total lo...
.~2Mmore * ...8 more
. sgd
LabelClasses . moving_a
~O—C D softmax_linear | = it
. - init.1
“01107% global_s,
* ...8 more
3 . sgd
] »___._ moving_a...
old_grad... ; > group_de...
conv2 ! ¥ n init
convl ! A % init_1
... 2more * ... 9 more
7 sgd
- moving_a...
: local3 S e
» init
) < init
* ... 9more

Figure 10: TensorBoard graph visualization of a convolutional neural network model

nn1/biases nn1/biases:gradient nn1/weights
0.600 | [0.300 |
0.400 | 2.000e-4 | 0.200 |
0.200 | ‘ 0.100 |
0.00 | 0:00x1 0.00 |
-0.200 | S -0.100 |
-0.400 | ; -0.200 |
-0.600 | -4.000e-4 | -0.300 |
ra ra ; ra
e 0.000 1000k 200.0k 300.0k s 0.000 30.00k 60.00k 90.00k| | “* 0.000 20.00k 40,00k 60.00k 80.00k

Figure 11: TensorBoard graphical display of model summary statistics time series data)
Image Source: (Abadi et al., 2015)

o UIVERSITY OF Real-World Results

Optimize the performance on the multi-GPU single host using

tf.distribute.MirroredStrategy :
concat Spllt An example of communication bottleneck:

- I5qx1:25676 Nvidia GPU 0 (pid 1) — o GPU Kernel Stats

Stream 118:MEMCPYD2D,KERNEL Mt |
Stream 119:MEMCPYH2D

Stream 120:MEMCPYD2H " nccl
Stream 121:MEMCPYP2P

Stream 150:KERNEL

Steps , L]
Launch Stats l Launch

» TensorFlow Name Scope |
TensorFlow Ops

- isqx1:25676 Nvidia GPU 1 {pid 2)
Stream 122:MEMCPYD2D,KERNEL MI |
Stream 123:MEMCPYH2D
Stream 124:MEMCPYD2H
Stream 151:KERNEL - neciAlRed...

Steps B ¢ |
|

Top 10 Kernels with highest Total Duration

@ nocclAIReduceRINgLLKemel_sum_f32{ncdC. .
@ voita_tp16_sgemm_fp16_128x128_nt

® voita_tp16_sgemm_fp16_128004_in

@ voita_tp16_sgemm_p16_64x32_sliced1x4_nt
@ voita_tp16_sgemm_fp16_32x125 nt

@ voita_fp16_sgemm_fp16_128x123_nn

@ voita_tp16_s384gemm_p16_123x128_kipS..
@ voita_tp16_sasdgemm_tp16_123x129_kipS.
® vou

tensoiow: functorApplyAdamKernel<fioat>,

Other

» TensorFlow Name Scope

TensorFlow Ops

~ isqx1:25676 Nvidia GPU 2 (pid 3) :
Stream 126:MEMCPYD2D KERNEL MI i
Straam 127-MEMCPYHIN Image Source: https://www.tensorflow.org/guide/profiler

https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy

58 UNIVERSITY OF
¥ CAMBRIDGE

Modern Distributed Training, and How far we’ve come

2015: 100 machines, days for ImageNet

2025: 10,000+ GPUs, models with 100B+ parameters

Technologies: AlIReduce, mixed precision, gradient accumulation
TensorFlow — PyTorch dominance (Eager Execution is easier to debug)
Profiling shows: Communication still the bottleneck at scale

.71 UNIVERSITY OF

&% CAMBRIDGE

Thank you

Questions?

