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What does Machine Learning actually needs? (Pre-2015 Challenge)

2014

Ian Goodfellow and colleagues 
invented generative adversarial 
networks, a type of model that is 
used to generate photos and create 
deep fakes

2017

Google researchers developed 
Transformer through a paper called 
“Attention is All you need”

2009

Fei-Fei Li introduced ImageNet, 
which became a catalyst for the AI 
boom! 

2012

Geoffrey Hinton, Ilya Sutskever and 
Alex Krizhevsky introduced a deep 
CNN architecture trained on NVIDIA 
GPU, they then won the ImageNet 
Competition

2022

OpenAI released ChatGPT in 
November to provide a chat-based 
interface to its GPT 3.5 LLM.

2015 2016

1. Flexibility to express diverse ML algorithms
2. Heterogeneous Hardware Support
3. Scalability
4. Research-to-Production Pipeline



The Dataflow Programming Model - Computation as a Graph

Core Principles of Dataflow Programming:
1. Computation == Directed Graph
2. Data-Driven Execution
3. Explicit Data Dependencies
4. Implicit Parallelism

2 Stage Process in TensorFlow:
1. Define program as dataflow graph
2. Optimize then execute

Image Source: (Abadi et al., 2015)



General-Purpose Dataflow Wasn't Enough

Dimension Earlier Dataflow System (Pre-Tensorflow) What Machine Learning in DataFlow needs?

Primary Use Case ● Focus on Batch Data Processing ● Iterative Optimization on Model Training

Execution Pattern ● One-shot jobs or periodic resubmission ● Millions of iterations in single session

State Management ● Mostly external storage ● Persistent mutable parameters in graph

Graph Structure ● Acyclic (DAGs only) ● Cyclic (loops) + conditionals

Operation 
Granularity

● Coarse (map/reduce on partitions) ● Fine-grained (individual matrix ops)



Lessons from TensorFlow's Predecessor - DistBelieve
Before Tensorflow, Google was using DistBelieve for their research.

Limitation #1: Separate Training and Inference Systems
Limitation #2: Hard-Coded Neural Network Focus, Difficult to express other ML
Limitation #3: Parameter Server as Separate Subsystem
Limitation #4: Limited Flexibility in Parallelism
Limitation #5: Difficult Debugging and Visualization

Image Source: Distributed TensorFlow (TensorFlow Dev Summit 2018) 
https://www.youtube.com/watch?v=-h0cWBiQ8s8



TensorFlow's Core Innovation #1 - Stateful Dataflow for ML

Container (Process)                 

Variable W: data                      ← Persists across
Variable b: data                            graph executions
Variable params:..             



TensorFlow's Core Innovation #2 - Single System, Any Platform

Image Source: (Abadi et al., 2015)



TensorFlow Advanced Feature #1: Automatic Differentiation

Image Source: (Abadi et al., 2015)



TensorFlow Advanced Feature #2: Partial Execution

Image Source: (Abadi et al., 2015)



TensorFlow Advanced Feature #3: Control Flow

“We introduce a small set of primitive control flow operators... The Switch and Merge operators allow 
us to skip the execution of an entire subgraph based on the value of a boolean tensor. The Enter, 
Leave, and NextIteration operators allow us to express iteration”

Image Source: 
https://hfooladi.github.io/posts/2019/0
5/TensorFlow-Condition/



How Tensorflow scales to Hundreds/Thousands of Machines?

Challenge #1: Decide which device to place the computation for each node in 
the graph
Challenge #2: Manage the required communication of data across device 
boundaries implied by these placement decisions
Challenge #3: Handle failures without losing training progress

Image Source: Distributed TensorFlow (TensorFlow Dev Summit 2018) 
https://www.youtube.com/watch?v=-h0cWBiQ8s8



Cost Model as input to a placement algorithm

Challenge #1: Decide which device to place the computation for each node in the graph

Step 1: Build a cost model which contains the estimated size of the input / output tensor & 
computational time.
Step 2: The placement algorithm runs a simulated execution of the graph

● Algorithm starts with the sources of the computation graph, and simulates the activity on 
each device in the system as it progresses

● Consider a set of feasible devices with suitable kernels
● For multiple feasible devices, the algorithm will pick device for each node in the graph using 

greedy heuristics
● This heuristic takes into account the estimated or measured execution time of the operation 

on that kind of device from the cost model

“On-going development”



From Parameter Server to Send / Receive Nodes (2015)

Challenge #2: Manage the required communication of data across device boundaries 
implied by these placement decisions

Image Source: (Abadi et al., 2015)Image Source: 
https://d2l.ai/chapter_computational-p
erformance/parameterserver.html



From Send / Receive Nodes to All Reduce (2018) 

All reduce is an collective operation, where all node contributes 
data, and every node receives the same aggregated data.

In machine learning, all-reduce operations are commonly seen in 
synchronous parameter updates of the distributed Stochastic 
Gradient Descent (SGD) optimization.

All reduce operation is included in NCCL, workable on NVLink 
and Infiniband.

Challenge #2: Manage the required communication of data across device boundaries 
implied by these placement decisions

Image Source: 
https://developer.nvidia.com/blog/mas
sively-scale-deep-learning-training-nc
cl-2-4/

Image Source: 
https://developer.nvidia.com/blog/fast-multi-
gpu-collectives-nccl/



Fault Tolerance & Checkpointing so Training Doesn't Stop for Failures

Challenge #3: Handle failures without losing training progress



Data Parallel Training

Image Source: (Abadi et al., 2015)



Model Parallel Training

Image Source: (Abadi et al., 2015)



Performance Optimizations

● Common subexpression elimination: Deduplicate identical ops
● Memory scheduling:  reduce the time window during which 

intermediate results need to be kept in memory
● Kernel libraries: cuDNN, Eigen (don't reinvent optimized linear algebra)
● Lossy compression: 32-bit → 16-bit for cross-device transfers



Profiling & Visualization Tools

Image Source: (Abadi et al., 2015)



Real-World Results 

Optimize the performance on the multi-GPU single host using 
tf.distribute.MirroredStrategy

An example of communication bottleneck:

Image Source: https://www.tensorflow.org/guide/profiler

https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy


Modern Distributed Training, and How far we’ve come

● 2015: 100 machines, days for ImageNet
● 2025: 10,000+ GPUs, models with 100B+ parameters
● Technologies: AllReduce, mixed precision, gradient accumulation
● TensorFlow → PyTorch dominance (Eager Execution is easier to debug) 
● Profiling shows: Communication still the bottleneck at scale



Thank you

Questions?


